

MS4 Municipal Stormwater Compliance and Vulnerable Infrastructure:

Stormwater Pollutant Removal and Extreme Event Adaptation Transportation Engineering and Safety Conference December 6, 2018

MS4 Compliance & Vulnerability

- Environmental Regulations: CWA
- Integrated Watershed Planning
- MS4 Stormwater Runoff Pollution TMDL Reductions

Extreme Weather Events

- Asset Inventory, Vulnerability
 Assessment, Risk Management
 and Adaptation
- Transportation Safety

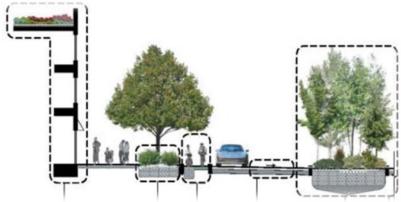
Integrated Watershed Based Planning for Joint Gray/Green Infrastructure Implementation

Transportation / Land Use / Water

- Green/Natural-Nature Based Infrastructure: GI/NNBI (GSI: MS4/CSO/SSO)
- Highways and Transportation
- Sustainability/walk-ability/ livability/Community Health
- PennDOT Connects(MPO/RPO)
- Capital Improvements w/Green Multiple Benefits:
- - Increased Resiliency
 - Multiple Benefits/Users-Triple **Bottom Line:** (Social/Ecologic/Economic)
 - Improved Sustainability
 - Cost Effective (B:C>1)

Philadelphia: Gray to Green Streets with GSI

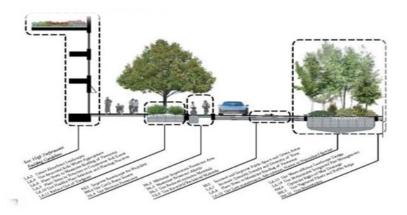
Gray Infrastructure

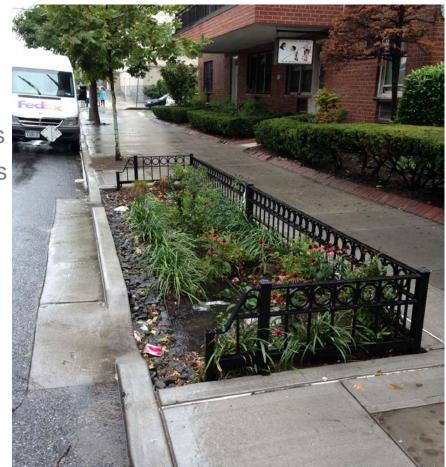

- Land Development (Agricultural/Residential/Commercial/Industrial/ Active Public Recreational Spaces)
- Transportation (Roads/Bridges/Transit/Airports/Ports)
- Utilities
 (Power/Sewer/Water/Gas/Electric/Communications)
- Stormwater and Flood Control (Basins/Impoundments/Dams/ Levees/Dikes)

Green/Nature Based Infrastructure GI/NNBI)

- Open Space Parks and Recreation Areas
- Passive Recreation (Trails/Walkways/Boardwalks/Footbridges)
- Pedestrian/ Bicycle Friendly Transportation
- Green Stormwater Infrastructure/PCSMs
 - Best Management Practices (BMPs) / Stormwater Control Measures (SCMs)
 - Floodplain Reconnection
 - NSCD Restoration/Stabilization
 - Floodplain Wetlands
 - Stormwater Wetlands
 - Basin Retrofits/Naturalization

Source: NYC"s High Performance Infrastructure Guidelines




Joint Planning & Implementation Benefits

Integrated Watershed/Infrastructure Planning: IWM

Partnerships (York County)

- Private/Non Profit Groups
- Watershed Groups
- Municipalities, MPOs/RPOs/DOTs
- More Comprehensive WQ Results
- Increased Investment Flexibility
- Greater Cost Effectiveness

Source: NYC's High Performance Infrastructure Guidelines

NPDES Permits MS4 Stormwater

- Regulated Small/Nontraditional MS4s – design stormwater management plan that:
 - Reduces discharge of pollutants to the maximum extent practicable (MEP)
 - Protects water quality
 - Satisfies appropriate water quality requirements of CWA
- 6 MCMs
- Additional Watershed Specific TMDL/PRP Requirements

Source: June 2011 Stormwater, www.storm.h20.com

MCM #3 IDDE

- What is and illicit discharge (ID)?
 - Improper dumping (discharge) from a property owner
 - Improper physical connection
- PennDOT tracks potential illicit discharges (PIDs) to verify compliance with the MS4 permit requirements.
- Implements standard inspection/verification and monitoring documentation for use by all PennDOT Districts, activity tracking has been standardized and monitored across the state.

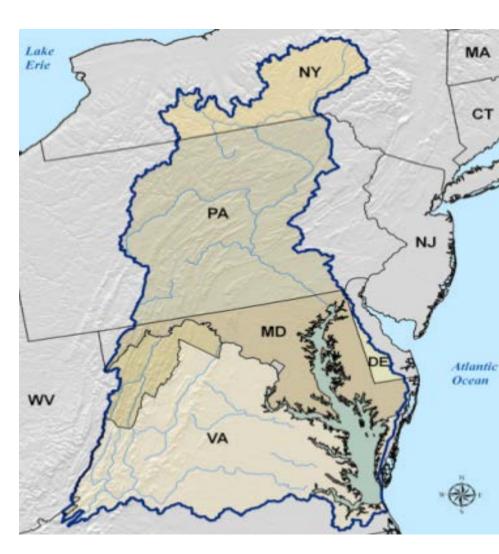
MCM #3 IDDE

 Illicit discharge detection and elimination as a means of providing TMDL waste load allocation compliance under MS4 permits

MCM #5- Green Stormwater Infrastructure-Flow/Volume Stormwater Control Measures

- Green Roof
- Stormwater Wetland
- Pervious Paving
- Rain Garden
- Rain Barrel
- Flow-through Planter
- Stormwater Tree Trench
- Curb Bump-out
- Stormwater Planter
- Storage/Infiltration Basin

MCM#5 PCSM/SCM Design/Construction/Long-term O&M Considerations



- Inventory SCMs
- Inspect (Frequency)
- Assess Conditions
- Screening Reports
- ID Maintenance Requirements:
 - Routine
 - Retrofit
 - Reconstruct
- Required Permits
- Access
- Maintenance Forces/ Contractor

MS4-TMDL/PRP Requirements

- Reduce pollutants (MS4 waste load allocation) from stormwater discharges w/in UAs
- Required by many watershed implementation plans (WIPs) including the Chesapeake Bay watershed
- Integrated Watershed Management (IWM)

Source: US Department of Agriculture

TMDL / Pollution Reduction Requirements

Sediment / Nutrients / Toxicants---- Impaired Waters (303d Listed)

CSO-SSO-MS4-TMDL Pollution/Volume Reduction

- Streetside GSI/Bio-Retention
- Basin Retrofits
- Stream Restoration
- Floodplain Reconnection
- Stormwater Wetlands
- Enhanced Riparian Buffers

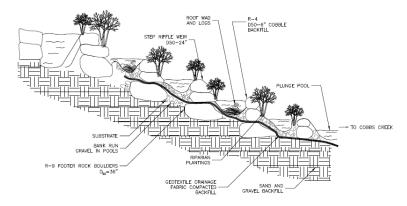
(Cobbs: PWD-PAI Market Street Rain Garden)

Stream Restoration for Pollutant Reduction

- Floodplain Reconnection
- Streambank stabilization
- Channel Stability-lowered shear stress
- Bankfull bench grading-floodprone area
- Increased Floodplain Capacity
- Improved Resiliency for Extreme Events

Pollutant Reduction & Natural Stream Channel Design Restoration (TMDL credits/Resiliency)

- Stream restoration documented for future pollutant load reduction credit: 44.88 #/LF/YR Sediment Reduction
- Floodplain reconnection: sediment & nutrient pollutant load reduction credit: scour reduction-improved stability



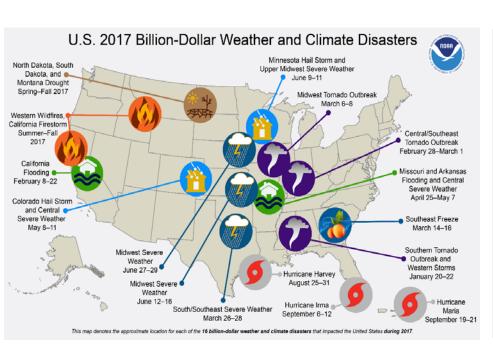
Step-Pool Stormwater Conveyance at Outfalls

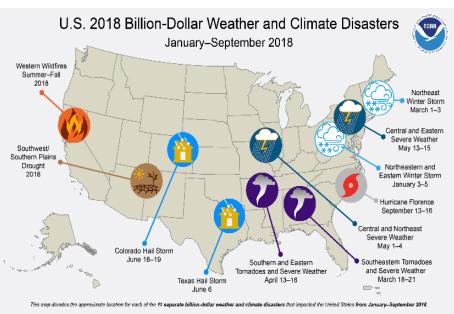
STEP-POOL STORMWATER CONVEYANCE

Source: My Green Montgomery, Montgomery County (MD) DEP

Stream Restoration- Floodplain Reconnection

Culvert/Outfall Step-Pool Conveyance Systems Storm-Flood Hazard Mitigation




Integrated Gray Infrastructure with Nature Based /Ecosystem Restoration

Plan & Design for Extreme Event Risks to Improve Resiliency

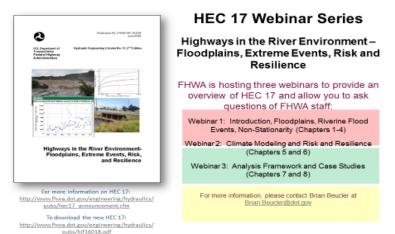
- Adaptation, Preparedness and Resilience for Extreme Weather Events
 - More numerous and more intense extremes= increased vulnerability/risk

Source: NYC's High Performance Infrastructure Guidelines

FHWA- Extreme Event Transportation System Preparedness, Risk & Resilience

- FHWA: Integrated Planning: NCHRP 840 Watershed Approach to Stormwater 08-93
- System-wide Risk Management 25-25(94)

Integrating Extreme Weather Risk- Asset Management

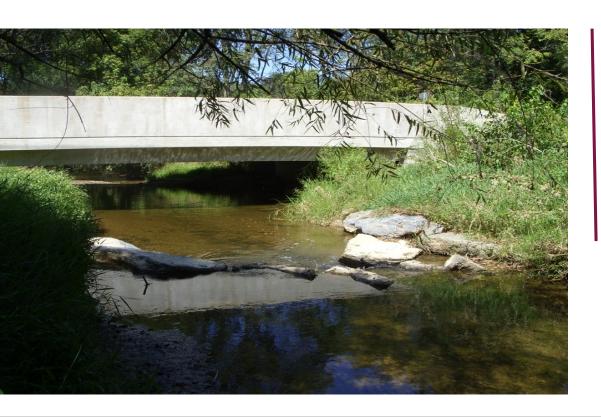

Resiliency Planning for Transit

HEC-20: Scour Analysis

HEC- 17: Highways-Riverine

HEC-25: Highways-Coastal

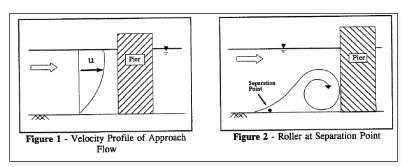
EDC 4, 5 CHANGE- 2D Models

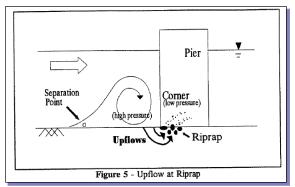


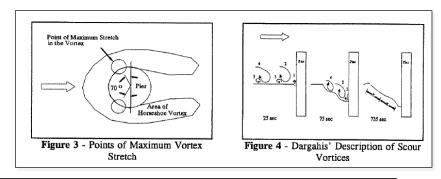
Special Federal Aid Funding (23 CFR 667-Repeat Loss Evaluate)

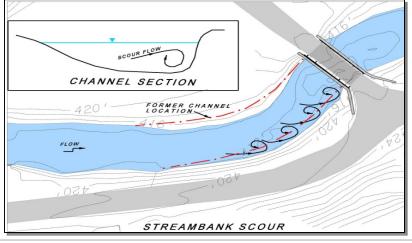
Bridge Scour Assessment for Sediment Load and Risk Reduction

 Natural stream channel design (NSCD) restoration improves water quality and resiliency during bridge replacement and highway reconstruction

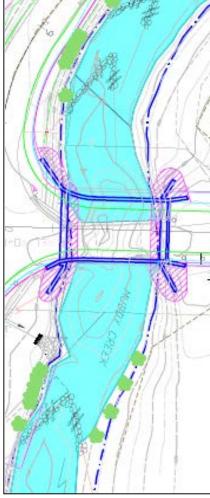

Scour undermines bridges and may cause bridge failures due to structural instability. In the last 30 years, more than 1,000 bridges collapsed in the U.S. and about 60% of the failures are related to the scour of bridge foundations.


Reference: FHWA/LA.10/535



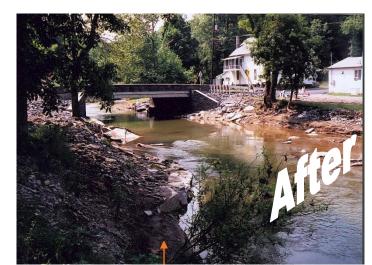

Bridge Scour Effects

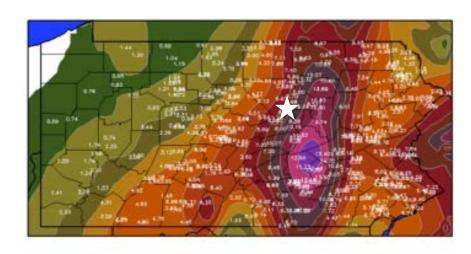
- 13,000 bridges in PA crossing streams and waterways. Many are rated scour critical
- Scour is the most common cause of bridge losses nationally
- Types and effects of scour



SR 2075 Bridge Replacement Over Muddy Creek, Tributary to the Susquehanna River

Isolated 7.5" rainfall event over 4 hours September 2001 & again on August 31, 2018-8" event in 3 hours





SR 1003, Bridge Replacement, Stream and Embankment Restoration, Wallis Run, Tributary to Loyalsock Creek

- Valley Ridge-Middle Section, Alleghany front, glacial outwash and terminal deposition,
- Confined hemlock forested valley, confluence grade flatteningdeposition
- Gas pipeline infrastructure
- Prior damage, debris accumulation
 Tropical Storm Lee 8-9" September 8,
 2011, (10 days post Irene)
- Severe Weather Event: October 21, 2016: 8+" rainfall over 4.5 hours

October 21, 2016 Extreme Weather Event

Before and after Extreme Event

Stream Channel, Embankment and Bridge Storm Damage-Loyalsock Creek

Channel Restoration and Rock J-Vane Construction

- 3-5 ton rock vanes
- Constructed to bankfull elevation

Stream Restoration Completion

Bridge Replacement & Cross Vane Completion

SR 1003 Bridge, Embankment & Wallis Run Restoration

Post Sandy Concept Design- Floodplain Restoration, Stormwater Wetlands & GI/NNBI

Oakwood Beach, Staten Island


- Stormwater- 100YR, Revetment 500YR+ SLR (FEMA to Revise)
- Stormwater wetlands: 80+ acres (Freshwater and Tidal Wetlands)
- Riparian buffer enhancements documented for future pollutant load reduction credit
- NSCD Restoration 1200+ LF- Living Shoreline option
- 2.0 miles- Trails, Boardwalks, Viewing Areas

Questions?

Tom Graupensperger
Senior Environmental Scientist/Project
Manager
Dewberry Engineers Inc.
TGraupensperger@dewberry.com
717.961.5098

Examples of Integrated Gray Infrastructure Planning and Natural / Ecosystem Restoration

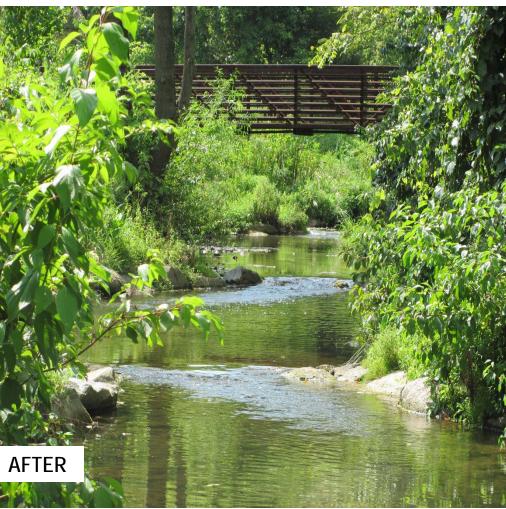
I-76/DLA – New Cumberland, York County

Floodplain Reconnection and Stormwater Wetlands

Springfield Gardens Park – Queens, New York City

Floodplain Restoration / Reconnection

Ecology Park, Valley Creek – East Whiteland Township, Chester County



Riparian Buffer Restoration

Ecology Park - Valley Creek

Floodplain Wetland / Stream Restoration

SR 202 Mitigation Wetland – Little Valley Creek, Tredyffrin Township

Stormwater Basin Retrofit – Stream/Wetlands Reconstruction

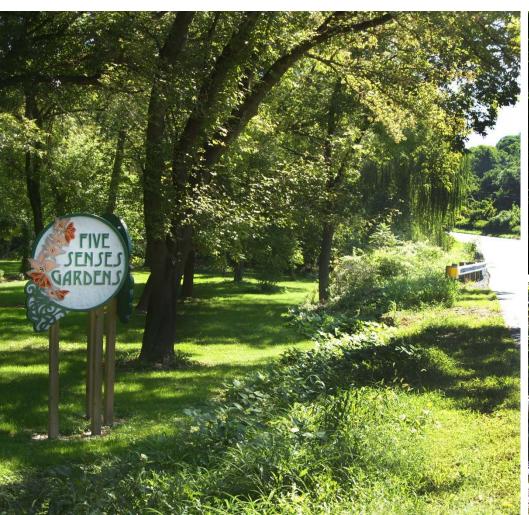
Tributary to Quittapahilla Creek – LVC, Lebanon County

Stream Daylighting – Floodplain Restoration

Mill Run Headwaters – Derry Township, Dauphin County

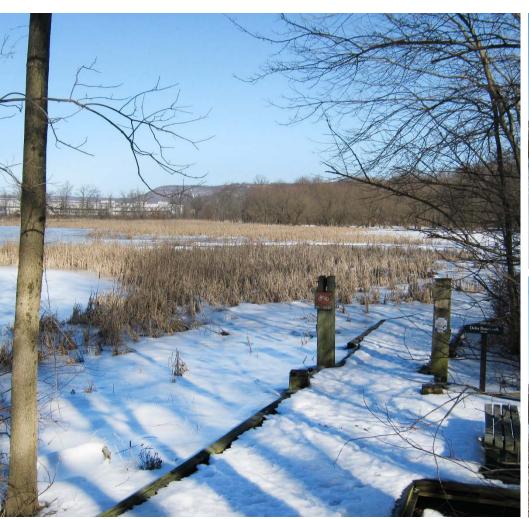
Lehman Township Park- Step-Pool Conveyance / Stabilization

Winona Five Falls – Monroe County



SR 441 Bridge Replacement and BMP

Spring Creek – Swatara Township. Dauphin County Park



Wildwood Lake Park and Regional Basin

I-81 – Dauphin County Parks

Bells Mill Run Reconnection - NSCD

Wissahickon Creek – Montgomery County

Cobbs Creek Park

Market Street – Philadelphia and Delaware County

Avenal Farm Golf Course

Potomac – Montgomery County

Center Street / Agricultural Wetland

Conodoguinet Creek – Cumberland County

Floodplain/Stormwater Wetland

East Penn Drive (Center Street) – Cumberland County

Simple Low-No Cost Examples: Retentive Grading Storage/Infiltration

Disconnected Floodplain - Storage / Recharge

Disconnected Floodplain Storage

Offset Pipe / Retention Storage / Infiltration

International Examples of Integrated Planning and Floodplain Management



Reference: Gies, Erica. (2015, September 1). *Cities are Finally Treating Water as a Resources, not a Nuisance*Retrieved from: http://ensia.com

Contact Info

Tom Graupensperger
Senior Environmental Scientist/Project
Manager
Dewberry Engineers Inc.
TGraupensperger@dewberry.com
717.961.5098